Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf Download

Advertisement

Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf Download. Gate 2019 exam will conduct in fab 2019. This article contain with all type information GATE 2019 exams like detail exam pattern and syllabus, marking scheme gate 2019, negative marking and total number of question will ask in gate 2019 exam. Here we provide you Gate 2019 Exam Syllabus End Pattern Free Pdf file.
Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf Download
Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf Download


We all know that gate 2019 will ask two type of question one type of question are multiple objective type and other is numerical objective type, During the online exam, the candidate must select the right answer for the questions for MCQs, while for the numerical type of questions, the candidate has to enter the numerical answer by using the mouse on a virtual keyboard.

Gate 2019 Exam Pattern for Mechanical Engineering
GATE 2019 Mechanical Engineering paper ask two type of questions first will objective in nature and each question will have choice of four answers. And second will Numerical Answer Questions, that type of questions will be no choices available for these types of questions. The answer for these questions is a real number to be entered by using mouse and virtual keypad displayed on the monitor. No negative marking for these questions.
In this paper each question (Both objective and Numerical Answer Questions) carries 1 or 2 marks questions in all the sections.
Duration & Timing Exam: 3 hours (180 minutes) hours duration.
Questions Type
No Of Questions
Maximum  Marks
General Aptitude+ Technical + Engineering Mathematics
65
100
Total
65
100

GATE 2019 Marks of Each Topic:
The gate 2019 total number of question will 65, have 100 marks. In this exams 10 questions will be from General Aptitude carrying 15 marks. Papers with the codes AE, AG, BT, CE, CH, CS, EC, EE, IN, ME, MN, MT, PE, PI, TF and XE, will include a compulsory Engineering Mathematics section carrying around 15% of the total marks, and General Aptitude section carrying 15% of total marks. The remaining 70% is reserved for the subject of the paper.
Negative Marking: in gate 2019 the negative marking scheme For 1-mark MCQs, 1/3 mark will be deducted for every incorrect attempt. In case of 2-mark MCQs, the candidate will be penalised 2/3 mark for wrong attempt For questions that aren’t attempted, zero marks will be awarded. There is no negative marking for numerical answer type (NAT) questions.

Syllabus for Gate 2019 for Mechanical Engineering with Pdf

Section 1: Engineering Mathematics
Linear Algebra: Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.
Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green’s theorems.
Differential equations: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations.
Complex variables: Analytic functions; Cauchy-Riemann equations; Cauchy’s integral theorem and integral formula; Taylor and Laurent series.
Probability and Statistics: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.
Numerical Methods: Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson’s rules; single and multi-step methods for differential equations.

Section 2: Applied Mechanics and Design
Engineering Mechanics: Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.
Mechanics of Materials: Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.
Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.
Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.
Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.
Section 3: Fluid Mechanics and Thermal Sciences
Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings.
Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis.

Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.
Applications: Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines.
Section 4: Materials, Manufacturing and Industrial Engineering
Engineering Materials: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.
Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.
Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, design of jigs and fixtures.
Metrology and Inspection: Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.
Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools.
Production Planning and Control: Forecasting models, aggregate production planning, scheduling, materials requirement planning.
Inventory Control: Deterministic models; safety stock inventory control systems.
Operations Research: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.

Syllabus for General Aptitude (GA) (Common for All Branch Papers)
Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.
Numerical Ability: Numerical computation, numerical estimation, numerical reasoning and data interpretation.
Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf

I hope these all Gate 2019 Syllabus and Exam Pattern for Mechanical Engineering Pdf Download will help you crack all engineering exams 2018-19. If you face any problem to download any file comment below. Like This Post Please Share With Your All Friends.
Advertise With Us: - Advertise With Erexams.Com We have more than 10 lakh Page Views Monthly all over world. 
Like Our Official Facebook Page ER EXAMS Click Here
Get Latest Engineering Exams Update Study Material and Much More Join Our
Telegram Group Engineering Exams Click Here
Subscribe Us To Get Latest Update Into Your Email Inbox Click Here To SUBSCRIBE US

Comment Below, Ask Anything About This Article...:)

Click to comment