Gate 2019 Syllabus and Exam Pattern for Electrical Engineering Pdf Download

Advertisement
Gate 2019 Syllabus and Exam Pattern for Electrical Engineering Pdf Download. Gate 2019 exam will conduct in fab 2019. This article contain with all type information GATE 2019 exams like detail exam pattern and syllabus, marking scheme gate 2019, negative marking and total number of question will ask in gate 2019 exam. Here we provide you Gate 2019 Exam Syllabus End Pattern Free Pdf file.
Gate 2019 Syllabus and Exam Pattern for Electrical Engineering Pdf Download
Gate 2019 Syllabus and Exam Pattern for Electrical Engineering Pdf Download
We all know that gate 2019 will ask two type of question one type of question are multiple objective type and other is numerical objective type, During the online exam, the candidate must select the right answer for the questions for MCQs, while for the numerical type of questions, the candidate has to enter the numerical answer by using the mouse on a virtual keyboard.
Gate 2019 Exam Pattern for Electrical Engineering
GATE 2019 Electrical Engineering paper ask two type of questions first will objective in nature and each question will have choice of four answers. And second will Numerical Answer Questions, that type of questions will be no choices available for these types of questions. The answer for these questions is a real number to be entered by using mouse and virtual keypad displayed on the monitor. No negative marking for these questions.

In this paper each question (Both objective and Numerical Answer Questions) carries 1 or 2 marks questions in all the sections.
Duration & Timing Exam: 3 hours (180 minutes) hours duration.
Questions Type
No Of Questions
Maximum  Marks
General Aptitude+ Technical + Engineering Mathematics
65
100
Total
65
100

GATE 2019 Marks of Each Topic:
The gate 2019 total number of question will 65, have 100 marks. In this exams 10 questions will be from General Aptitude carrying 15 marks. Papers with the codes AE, AG, BT, CE, CH, CS, EC, EE, IN, ME, MN, MT, PE, PI, TF and XE, will include a compulsory Engineering Mathematics section carrying around 15% of the total marks, and General Aptitude section carrying 15% of total marks. The remaining 70% is reserved for the subject of the paper.
Negative Marking: in gate 2019 the negative marking scheme For 1-mark MCQs, 1/3 mark will be deducted for every incorrect attempt. In case of 2-mark MCQs, the candidate will be penalised 2/3 mark for wrong attempt For questions that aren’t attempted, zero marks will be awarded. There is no negative marking for numerical answer type (NAT) questions.

Syllabus for Gate 2019 for Electrical Engineering with Pdf
Section 1: Engineering Mathematics
Linear Algebra: Matrix Algebra, Systems of linear equations, Eigenvalues, Eigenvectors.
Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes’s theorem, Gauss’s theorem, Green’s theorem.
Differential equations: First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy’s equation, Euler’s equation, Initial and boundary value problems, Partial Differential Equations, Method of separation of variables.
Complex variables: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula, Taylor series, Laurent series, Residue theorem, Solution integrals.
Probability and Statistics: Sampling theorems, Conditional probability, Mean, Median, Mode, Standard Deviation, Random variables, Discrete and Continuous distributions, Poisson distribution, Normal distribution, Binomial distribution, Correlation analysis, Regression analysis.
Numerical Methods: Solutions of nonlinear algebraic equations, Single and Multistep methods for differential equations.
Transform Theory: Fourier Transform, Laplace Transform, zTransform.

Electrical Engineering
Section 2: Electric Circuits
Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two port networks, Three phase circuits, Power and power factor in ac circuits.
Section 3: Electromagnetic Fields
Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits,Self and Mutual inductance of simple configurations.
Section 4: Signals and Systems
Representation of continuous and discretetime signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform.


Section 5: Electrical Machines
Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests,regulation and efficiency; Three phase transformers: connections, parallel operation; Auto transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines.
Section 6: Power Systems
Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion.
Section 6: Power Systems
Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead Lag compensators; P, PI and PID controllers; State space model, State transition matrix.
Section 8: Electrical and Electronic Measurements
Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.
Section 9: Analog and Digital Electronics
Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, DE multiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing.

Section 10: Power Electronics
Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation.

Syllabus for General Aptitude (GA) (Common for All Branch Papers)
Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.
Numerical Ability: Numerical computation, numerical estimation, numerical reasoning and data interpretation.
Advertise With Us: - Advertise With Erexams.Com. I have more than 10 lakh Page Views Monthly India.  Click Here For Advertisement
Like Our Official Facebook Page ER EXAMS Click Here

Comment Below, Ask Anything About This Article...:)

Click to comment